Quantum symmetrical quadratic potential in a box

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 112363
(http://iopscience.iop.org/0305-4470/11/12/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 15:17

Please note that terms and conditions apply.

Quantum symmetrical quadratic potential in a box

F C Rotbart
Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel

Received 22 November 1977, in final form 6 June 1978

Abstract

The quantum mechanical problem of a repulsive quadratic potential in a box is solved by an algebraic and numerical computer technique. The energy eigenvalues are tabulated for various box sizes and the lowest energy level is tabulated as a function of the quadratic potential strength, where the potential varies from strongly attractive through zero to strongly repulsive. Tunnelling and level pairing are seen to occur.

Besides being of obvious theoretical interest, the quantum system of a particle moving in a bounded quadratic potential appears in several physical situations. For instance, a critical point of infinite type (Benguigui 1977) can be described by means of a transition from an attractive to a repulsive quadratic potential in an infinite well.

The solution for the boxed attractive quadratic potential was found recently by Consortini and Frieden (1976) by means of a numerical procedure. In what follows, the solution for the repulsive quadratic potential is found in a similar way. Following this, the lowest energy level is calculated as a function of the strength of the quadratic potential, where the potential varies from strongly attractive through zero to strongly repulsive.

Let us consider a particle of mass m confined within two infinitely repulsive potentials separated by a distance $2 x_{0}$ and acted upon by a quadratic potential $V(x)=-\frac{1}{2} k x^{2}$, where k is obviously a constant. For simplicity we work in one dimension and consider only a symmetrical potential (see figure 1). The Schrödinger equation for this system is given by

$$
\begin{equation*}
-\left(\hbar^{2} / 2 m\right) \psi^{\prime \prime}(x)-\frac{1}{2}|k| x^{2} \psi(x)=E \psi(x) \tag{1}
\end{equation*}
$$

for $-x_{0}<x<x_{0}$ and zero elsewhere. Defining the dimensionless quantities

$$
\begin{equation*}
t=\alpha x, \quad a=-E / \beta \tag{2}
\end{equation*}
$$

where

$$
\alpha^{4}=4|k| m / \hbar^{2}, \quad \beta=\hbar(|k| / m)^{1 / 2} \equiv \hbar \omega
$$

transforms equation (1) into the standard parabolic cylinder function

$$
\begin{equation*}
\left(\mathrm{d}^{2} y(t) / \mathrm{d} t^{2}\right)+\left(\frac{1}{4} t^{2}-a\right) y(t)=0 \tag{3}
\end{equation*}
$$

This has a solution (Abramowitz and Stegun 1964) of the form

$$
\begin{equation*}
y(t)=A y_{1}(t)+B y_{2}(t) \tag{4}
\end{equation*}
$$

Figure 1. Auadratic potentials in a box. Note that E and \boldsymbol{a} have opposite signs.
where

$$
\begin{align*}
& y_{1}(t)=1+\sum_{n(\text { even })=2}^{\infty} c_{n} t^{n} / n! \tag{4a}\\
& y_{2}(t)=t+\sum_{n(\mathrm{odd})=3}^{\infty} c_{n} t^{n} / n! \tag{4b}
\end{align*}
$$

are even and odd functions of t respectively. The coefficients c_{n} are defined by

$$
c_{n}=a c_{n-2}-\frac{1}{4}(n-2)(n-3) c_{n-4} \quad\left\{\begin{array}{l}
c_{0}=1 \tag{4c}\\
c_{1}=1
\end{array}\right.
$$

where it should be remembered that the a are the dimensionless energy eigenvalues that are required. From its definition (2), and from figure 1, it is clear that a will be negative for energy levels above the peak of the quadratic potential and positive below.

The boundary conditions are given by

$$
\begin{equation*}
\psi\left(x_{0}\right)=\psi\left(-x_{0}\right)=0 \tag{5}
\end{equation*}
$$

which transforms to

$$
\begin{equation*}
y\left(t_{0}\right)=y\left(-t_{0}\right)=0 \quad \text { for } t_{0}=\alpha x_{0} \tag{6}
\end{equation*}
$$

From equation (4) these are obviously satisfied by

$$
\begin{equation*}
y_{1}\left(t_{0}\right)=0, \quad B=0 \tag{7}
\end{equation*}
$$

or

$$
y_{2}\left(t_{0}\right)=0, \quad A=0
$$

This means that the even and odd solutions (4a) and (4b) can be treated separately. Using the Lisp 1.5 based algebraic manipulation program REDUCE 2 (Hearn 1973), equations ($4 a$) and ($4 b$) were each evaluated and expressed as a polynomial of order 49 or less in a.

By the boundary conditions (7) these polynomials are equal to zero at the box walls and hence, for each half-well width t_{0}, solving for the roots of the polynomials will give
the eigenvalues a. This was done using standard fortran iv techniques. Since standard library programs were used, the order of the polynomials had to be adjusted for each value of t_{0} to be the maximum possible without generating numbers smaller than those the computor, an IBM $370 / 168$, was able to handle. This limited the number of accurate eigenvalues for each value of t_{0} to about $N / 2$, where N was the order of the polynomial in a.

IBM double precision, i.e. 15-16 significant figures, was used throughout and the accuracy of the results was established by two means. Firstly the algorithm chosen for calculating the roots of the polynomials calculated the complex roots, and hence any eigenvalue with a non-negligible imaginary part was discarded as being due to the finite order of the polynomial. Secondly, and most importantly, for each value of t_{0} the calculation was performed twice, the second time decreasing the order of the polynomial by one. Then, for each eigenvalue, only significant figures which remained unchanged by the decrease in order were known to be correct. This in general gave an accuracy of better than 13 significant figures for the lower eigenvalues. However, for the sake of compactness, generally only 10 or less figures are quoted. These are tabulated in table 1. The half-well width t_{0} is expressed as multiples of $\sqrt{2}$ to facilitate

Table 1. Energy levels a_{n} as a function of t_{0}.

t_{0}	$\frac{1}{4} \sqrt{2}$	$\sqrt{2}$	$2 \sqrt{2}$	$\frac{5}{2} \sqrt{2}$
	-19.735 12456	-1.167756672	-0.002 263391345	0.4220414536
	-78.94800155	-4.792906 634	-0.6314643022	0.2383208409
	-177.6431662	-10.94801988	-2.168 354462	-0.8985564987
	-315.817320 0	-19.579 03086	-4.304 526926	-2.202110435
	-493.470 0567	-30.68002747	-7.068585568	-3.951576436
	-710.6012761	-44.24946700	-10.454 31614	-6.106763 451
	-967.21	-60.28680598	-14.45943181	-8.662 548656
	-1263	-78.79181380	-19.082 84613	-11.61643856
		-99.764 37920	-24.323 99351	-14.97615326
		-123.204 44320	-30.182 5578	-18.713974 51
		-149.111972	-36.6583518	-22.85647330
		-177.487	-43.7512592	-27.394381
		-208.3	-51.461 2048	-32.32752
			-59.788138	-37.655 78
t_{0}	$\frac{1}{2} \sqrt{2}$	$\frac{3}{2} \sqrt{2}$	-68.732 03	-43.379 1
			-78.293	-49.4973
	-4.918456570	-0.394174 1389	-88	-56.01
	-19.70386599	-1.868810530		-62.9
	-44.374 36946	-4.586822 479		
	-78.91675411	-8.414065073		
	-123.3294035	-13.34336882		
	-177.6119177	-19.37167658		
	-241.764 1593	-26.49779691		
	-315.7860709	-34.721 19620		
	-399.6776	-44.041 60835		
	-493.44	-54.458889 19		
	-597	-65.972955 28		
		-78.5837556		
		-92.291 257		
		-107.0954		
		-123.00		

Table 1-(continued)

t_{0}	$3 \sqrt{2}$	$\frac{7}{2} \sqrt{2}$	$4 \sqrt{2}$	$5 \sqrt{2}$
	1.170473176	2.297879314	3.725613244	$7 \cdot 4100334752$
	$1 \cdot 150858052$	$2 \cdot 297205136$	3.725604475	$7 \cdot 4100334751$
	-0.200106508	0.3199783014	$1 \cdot 182241966$	$4 \cdot 100478458$
	-0.883 199160	$0 \cdot 1222020764$	1-166966529	$4 \cdot 100476265$
	-2.066066919	-0.815 555932	-0.074 03905753	1.803959653
	-3.534 573368	-1.806095484	-0.5467674520	1.801833364
	-5.292329667	-3.061 287327	-1.465 416687	0.315260579
	-7.332 137157	-4.535 361786	-2.540498012	$0 \cdot 148343961$
	-9.650876187	-6.221751383	-3.797839 981	-0.651960566
	-12.24684796	-8.116430729	-5.22398498	-1.400 891042
	$-15 \cdot 11905266$	-10.21712709	-6.81395859	-2.333 05576
	-18.2668672	-12.522 44919	-8.564 76802	-3.3874197
	-21.689 886	-15.0314998	-10.474 5308	-4.5585798
	-25.387835	-17.743677	-12.542000	-5.841 031
	-29.360 52	-20.65856	-14.766 320	-7.231459
	-33.60782	-23.77586	-17.14688	-8.72762
	-38.130	-27.095	-19.68323	-10.3280
	-42.926	-30.617	-22.375	-12.0313
	-48.00	-34.34	-25.222	-13.837
	-53.35	-38.3	-28.2	-15.74
	-59	-42.4	-31.4	-17.75
			-34.7	-19.9
				-22.2
				-24

comparison with the results for a positive quadratic potential (Consortini and Frieden 1976). \dagger

From these results it can be seen that as t_{0} becomes small the eigenvalues approach those of an infinite square well, namely

$$
\begin{equation*}
a_{n}=-\frac{\pi^{2} n^{2}}{4 t_{0}^{2}} \quad n=1,2,3 \ldots \tag{8}
\end{equation*}
$$

Even for moderate t_{0} this agreement exists for the highest energy levels. Of course this is to be expected, since as the well narrows, or the particle energy is very large, the quadratic potential appears to the particle as an approximately flat potential.

As t_{0} increases, the particle sees the well split into two wells separated by the quadratic potential, and it would be expected that because of the symmetry of the situation the probability distributions would be equal in each well. This is in fact what happens. For t_{0} such that the particle has a narrow potential between the two wells, tunnelling occurs, while for greater t_{0}, where the potential appears very wide to the lower energy levels, the penetration factor becomes very small. At this stage the eigenvalues become very closely paired. The separation between pair members is in agreement with a WKB calculation (Landau and Lifshitz 1975), which gives the

[^0]separation between these members by \dagger
\[

$$
\begin{equation*}
a_{n}-a_{n+1} \sim \exp \left(-a_{n} \pi\right) \tag{9}
\end{equation*}
$$

\]

for $a_{n}-a_{n+1} \ll 1$.
To calculate the lowest energy level as a function of quadratic potential strength we first define a dimensionless energy and potential energy by

$$
\begin{align*}
& \epsilon=E / \sigma=-2 a t_{0}^{2} \sigma \\
& \nu=(\gamma / 2)|k| x_{0}^{2} / \sigma=(\gamma / 2) t_{0}^{4} \tag{10}
\end{align*}
$$

where

$$
\sigma=\hbar^{2} / 4 m x_{0}^{2}, \quad \gamma=k /|k|
$$

Then for each value of ν, t_{0} is given by equation (10) and the above computer program used to calculate a and hence ϵ.

For attractive potentials, that is $\gamma=+1$, the same procedure is used except that equation (4c) must be replaced by

$$
c_{n}=a_{n-2}+\frac{1}{4}(n-2)(n-3) c_{n-4} \quad\left\{\begin{array}{l}
c_{0}=1 \tag{11}\\
c_{1}=1
\end{array}\right.
$$

The results of these calculations are listed in table 2.

Table 2. Lowest energy level ϵ as a function of ν.

ν	ϵ	ν	ϵ	ν	ϵ	ν	ϵ
390	27.92867152	140	16.75684155	-110	-20.88161295	-360	-146.5917148
380	27.56832365	130	16. 15474410	-120	-24.59664150	-370	-152.4102789
370	27.20320808	120	15.53086506	-130	-28.508 28921	-380	-158.2651319
360	26.83313124	110	14.882937743	-140	-32.59791162	-390	-164.1549932
350	26.45788623	100	14.20832784	-150	-36.847870 62	-400	-170.0786633
340	26.07725149	90	13.50396100	-160	-41.242 14318	-410	-176.0350161
330	25.69098933	80	12.76622639	-170	-45.766 54433	-420	-182.022 9928
320	$25 \cdot 29884430$	70	11.99086317	-180	-50.408709 23	-430	-188.0415961
310	24.90054128	60	$11 \cdot 17281881$	-190	-55.15794742	-440	-194.089885 1
300	24.49578336	50	$10 \cdot 30607667$	-200	-60.005 04411	-450	-200.1669714
290	24.08424942	40	9.383448232	-210	-64.94205223	-460	-206.2720150
280	23.66559132	30	8.396258511	-220	-69.962 09785	-470	-212.404 2206
270	23.23943072	20	7.334418403	-230	-75.059 20834	-480	-218.5628354
260	22.80535542	10	6.185428944	-240	-80.22816583	-490	-224.7471456
250	22.36291507	0	4.934802201	-250	-85.464 38456	-500	-230.9564745
240	21.91161630	-10	3.565514537	-260	-90.763809 51	-510	-237.190 1800
230	21.45091692	-20	$2 \cdot 058070649$	-270	-96.12283301	-520	-243.4476528
220	20.98021924	-30	0.3908419430	-280	-101.5382264	-530	-249.7283144
210	20.49886220	-40	-1.459 075413	-290	-107.007 0838	-540	-256.0316153
200	20.00611208	-50	-3.514356233	-300	-112.5267762	-550	-262.3570334
190	19.50115147	-60	-5.795337978	-310	-118.0949128	-560	-268.7040722
180	18.98306623	-70	-8.317634706	-320	-123.7093101	-570	-275.0722589
170	18.45082986	-80	-11.090 07736	-330	-129.3679650	-580	-281.4611431
160	17.90328473	-90	$-14 \cdot 11364052$	-340	-135.069 0330	-590	-287.870 2947
150	17.33911946	-100	-17.38172013	-350	-140.8108097	-600	-294.2293016

\dagger Of course, the WKB method cannot be used to give the normalisation constants for the lowest levels; rather an exact calculation would be needed. However, the exponential term is the same in any case.

Acknowledgment

I would like to thank R Shtokhamer for his kind help with the REDUCE 2 programming system.

References

Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (Washington: NBS) Benguigui L 1977 Phys. Rev. B 161966
Corsortini A and Frieden B R 1976 Nuovo Cim 35153
Hearn A C 1973 Reduce 2 Users Manual (Utah: University of Utah)
Landau L D and Lifshitz E M 1975 Quantum Mechanics-Non Relativistic Theory 2nd edn (Oxford:
Pergamon) p 175

[^0]: \dagger Graphical plots of the first two eigenfunctions for each t_{0} were made. However, due to lack of space, they were not included but will be made available privately.

