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Quantum symmetrical quadratic potential in a box 
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Abstract. The quantum mechanical problem of a repulsive quadratic potential in a box is 
solved by an algebraic and numerical compuier technique. The energy eigenvalues are 
tabulated for various box sizes and the lowest energy level is tabulated as a function of the 
quadratic potential strength, where the potential varies from strongly attractive through 
zero to strongly repulsive. Tunnelling and level pairing are seen to occur. 

Besides being of obvious theoretical interest, the quantum system of a particle moving 
in a bounded quadratic potential appears in several physical situations. For instance, a 
critical point of infinite type (Benguigui 1977)can be described by means of a transition 
from an attractive to a repulsive quadratic potential in an infinite well. 

The solution for the boxed attractive quadratic potential was found recently by 
Consortini and Frieden (1976) by means of a numerical procedure. In what follows, the 
solution for the repulsive quadratic potential is found in a similar way. Following this, 
the lowest energy level is calculated as a function of the strength of the quadratic 
potential, where the potential varies from strongly attractive through zero to strongly 
repulsive. 

Let us consider a particle of mass m confined within two infinitely repulsive 
potentials separated by a distance 2 x 0  and acted upon by a quadratic potential 
V ( x ) = - t k x 2 ,  where k is obviously a constant. For simplicity we work in one 
dimension and consider only a symmetrical potential (see figure 1). The Schrodinger 
equation for this system is given by 

- ( ~ ’ / ~ w z ) $ ~ ’ ( x ) -  t l k l x * $ ( ~ )  = E $ ( x )  

for - x o < x  < x o  and zero elsewhere. Defining the dimensionless quantities 

t = f fx ,  a = -E/P 

where 

a4  = 41klm/h2, P = h(/k//m)”’ = ho 

transforms equation (1) into the standard parabolic cylinder function 

(d’y(t)/dt*)+ (!t’--a)y(t)= 0. 

This has a solution (Abramowitz and Stegun 1964) of the form 

Y 0) = AY l ( t ) +  BY’(?) 
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Figure 1. Auadratic potentials in a box. Note that E and a have opposite signs 

where 

y 1 ( t ) =  1+ 1 cn t " /n !  
n(even)=2 

'x 

y * ( r ) = t +  c,t"/n! 
n(odd)=3 

are even and odd functions of t respectively. The coefficients c, are defined by 

where it should be remembered that the a are the dimensionless energy eigenvalues 
that are required. From its definition (2), and from figure 1, it is clear that a will be 
negative for energy levels above the peak of the quadratic potential and positive below. 

The boundary conditions are given by 

$ b o )  = $(-xo) = 0 

Y ( t o )  = Y (-to> = 0 

(5  1 

(6 1 
which transforms to 

for to = a x o .  

From equation (4) these are obviously satisfied by 

Y 1(to> = 0, B=O 
or 

Y2(t0) = 0, A = O .  

This means that the even and odd solutions (4a) and (4b) can be treated separately. 
Using the LISP 1.5 based algebraic manipulation program REDUCE 2 (Hearn 1973), 
equations (4a) and (46) were each evaluated and expressed as a polynomial of order 49 
or less in a.  

By the boundary conditions (7) these polynomials are equal to zero at the box walls 
and hence, for each half-well width to, solving for the roots of the polynomials will give 
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the eigenvalues a.  This was done using standard FORTRAN IV techniques. Since 
standard library programs were used, the order of the polynomials had to be adjusted 
for each value of to to be the maximum possible without generating numbers smaller 
than those the computor, an IBM 370/168, was able to handle. This limited the 
number of accurate eigenvalues for each value of to to about N/2,  where N was the 
order of the polynomial in a. 

IBM double precision, i.e. 15-16 significant figures, was used throughout and the 
accuracy of the results was established by two means. Firstly the algorithm chosen for 
calculating the roots of the polynomials calculated the complex roots, and hence any 
eigenvalue with a non-negligible imaginary part was discarded as being due to the finite 
order of the polynomial. Secondly, and most importantly, for each value of to the 
calculation was performed twice, the second time decreasing the order of the poly- 
nomial by one. Then, for each eigenvalue, only significant figures which remained 
unchanged by the decrease in order were known to be correct. This in general gave an 
accuracy of better than 13 significant figures for the lower eigenvalues. However, for 
the sake of compactness, generally only 10 or less figures are quoted. These are 
tabulated in table 1. The half-well width to is expressed as multiples of J 2  to facilitate 

Table 1. Energy levels a,  as a function of 10. 

f 0  J 2  J 2  2 J 2  2J2 

-19.735 124 56 
-78.948 001 55 
-177,643 166 2 
-315.817 3200 
-493.470 056 7 
-710.601 276 1 
-967.21 
-1263 

-1.167 756672 
-4,792 906 634 
-10.948 019 88 
-19.579 030 86 
-30.680 027 47 
-44.249 467 00 
-60.286 805 98 
-78.791 813 80 
-99.764 379 20 
-123.204 443 20 
-149.111 972 
-177.487 
-208.3 

t0  i J 2  2 J 2  

-4.918 456 570 -0.394 174 138 9 
-19.703 865 99 -1,868 810 530 
-44.374 369 46 -4.586 822 479 
-78.916 754 11 -8,414 065 073 
-123.329403 5 -13,343 368 82 
-177.611 917 7 -19,371 676 58 
-241.764 159 3 -26.497 796 91 
-315.786 070 9 -34.721 196 20 
-399.677 6 -44.041 608 35 
-493.44 -54.458 889 19 
-597 -65.972 955 28 

-78.583 755 6 
-92.291 257 
- 107.095 4 
-123.00 

-0.002 263 391 345 
-0.63 1 464 302 2 
-2.168 354 462 
-4,304 526 926 
-7,068 585 568 
-10.454 316 14 
-14,459431 81 
-19.082 846 13 
-24.323 993 51 
-30.182 557 8 
-36.658 351 8 
-43.751 259 2 
-51.461 204 8 
-59.788 138 
-68.732 03 
-78.293 
-88 

0.422 041 453 6 
0.238 320 840 9 

-0.898 556 498 7 
-2.202 110 435 
-3.951 576 436 
-6.106 763 451 
-8.662 548 656 
-11.61643856 
-14.976 153 26 
-18.713 974 51 
-22.856 473 30 
-27.394 381 
-32.327 52 
-37.655 78 
-43,379 1 
-49.497 3 
-56.01 
-62.9 
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Table 1-(continued) 

to 3 v'2 5J2 442 542 

1,170 473 176 
1.150 858 052 

-0.200 106 508 
-0,883 199 160 
-2.066 066 919 
-3.534 573 368 
-5.292 329 667 
-7.332 137 157 
-9.650 876 187 
-12.246 847 96 
-15.11905266 
-18,266 867 2 
-21.689 886 
-25.387 835 
-29,360 52 
-33.607 82 
-38.130 
-42.926 
-48.00 
-53.35 
-59 

2.297 879 314 
2.297 205 136 
0.319 978 301 4 
0.122 202 076 4 

-0,815 555 932 
-1.806 095 484 
-3.061 287 327 
-4,535 361 786 
-6.221 751 383 
-8.1 16 430 729 
-10.217 127 09 
-12.522 449 19 
-15,031 499 8 
-17,743 677 
-20.658 56 
-23.775 86 
-27,095 
-30,617 
-34.34 
-38.3 
-42.4 

3.725 613 244 
3.725 604 475 
1,182 241 966 
1,166 966 529 

-0.074 039 057 53 
-0.546 767 452 0 
-1.465 416 687 
-2.540 498 012 
-3.797 839 981 
-5.223 984 98 
-6,813 958 59 
-8.564 768 02 
-10,474 530 8 
-12.542 000 
-14.766 320 
-17,146 88 
-19,683 23 
-22,375 
-25,222 
-28.2 
-31.4 
-34.7 

7,410 033 475 2 
7.410 033 475 1 
4,100 478 458 
4.100 476 265 
1 4 0 3  959 653 
1,801 833 364 
0,315 260 579 
0.148 343 961 

--0.651 960 566 
-1,400 891 042 
-2.333 055 76 
-3.387 419 7 
-4,558 579 8 
-5,841 031 
-7,231 459 
-8.727 62 
-10,328 0 
-12.031 3 
-13,837 
-15.74 
-17.75 
-19.9 
-22.2 
-24 

comparison with the results for a positive quadratic potential (Consortini and Frieden 
1976).t 

From these results it can be seen that as to becomes small the eigenvalues approach 
those of an infinite square well, namely 

Even for moderate to  this agreement exists for the highest energy levels. Of course this 
is to be expected, since as the well narrows, or the particle energy is very large, the 
quadratic potential appears to the particle as an approximately flat potential. 

As to increases, the particle sees the well split into two wells separated by the 
quadratic potential, and it would be expected that because of the symmetry of the 
situation the probability distributions would be equal in each well. This is in fact what 
happens. For to such that the particle has a narrow potential between the two wells, 
tunnelling occurs, while for greater to, where the potential appears very wide to the 
lower energy levels, the penetration factor becomes very small. At this stage the 
eigenvalues become very closely paired. The separation between pair members is in 
agreement with a WKB calculation (Landau and Lifshitz 1975), which gives the 

+ Graphical plots of the first two eigenfunctions for each to were made. However, due to lack of space, they 
were not included but will be made available privately. 
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separation between these members by? 

a,  - a,+l- exp(-a,.rr) (9) 
for a, -a,+l<< 1. 

first define a dimensionless energy and potential energy by 
To calculate the lowest energy level as a function of quadratic potential strength we 

2 
E = E / a  = -2atou 

v = (Y/2)lklx:/ff = ( y / 2 ) d  

a = t i2/4mx;,  

(10) 
where 

Y = kllkl. 

Then for each value of v, to is given by equation (10) and the above computer program 
used to calculate a and hence E .  

For attractive potentials, that is y = +1, the same procedure is used except that 
equation ( 4 c )  must be replaced by 

The results of these calculations are listed in table 2. 

Table 2. Lowest energy level E as a function of Y. 

Y E Y E V E Y E 

390 
380 
370 
360 
350 
340 
330 
320 
310 
300 
290 
280 
270 
260 
250 
240 
230 
220 
210 
200 
190 
180 
170 
160 
150 

27.928 671 52 140 
27.568 323 65 130 
27,203 208 08 120 
26.833 131 24 110 
26.457 886 23 100 
26.077 25 1 49 90 
25.690 989 33 80 
25.298 844 30 70 
24.900 541 28 60 
24.495 783 36 50 
24.084 249 42 40 
23.665 591 32 30 
23,239 430 72 20 
22.805 355 42 10 
22.362 915 07 0 
21.911 616 30 -10 
21.450 916 92 -20 
20.980 219 ?4 -30 
20.498 862 20 -40 
20.006 112 08 -50 
19.501 151  47 -60 
18.983 066 23 -70 
18.450 829 86 -80 
17.903 284 73 -90 
17.339 11946 -100 

16.756 841 55 -110 
16.154 744 10 -120 
15.530865 06 -130 
14.882 937 743 -140 
14.208 327 84 -150 
13,503 961 00 -160 
12.766 226 39 -170 
11.990863 17 -180 
11.172 818 81 -190 
10.306 076 67 -200 
9,383 448 232 -210 
8.396 258 511 -220 
7,334 418 403 -230 
6.185 428 944 -240 
4.934 802 201 -250 
3.565 514 537 -260 
2.058 070 649 -270 
0.390 841 943 0 -280 

-1,459 075 413 -290 
-3.514 356 233 -300 
-5.795 337 978 -310 
-8.317 634 706 -320 
-11.090077 36 -330 
-14.113 640 52 -340 
-17.381 720 13 -350 

-20.881 612 95 
-24,596 641 50 
-28.508 289 21 
-32.597 911 62 
-36.847 870 62 
-41.242 143 18 
-45.766 544 33 
-50.408 709 23 
-55.157 947 42 
-60.005 044 11 
-64,942 052 23 
-69.962 097 85 
-75.059 208 34 
-80.228 165 83 
-85.464 384 56 
-90.763 809 5 1  
-96.122 833 01 
-101.538 226 4 
-107.007 083 8 
-1 12.526 776 2 
-118.094 912 8 
-123,709 310 1 
-129.367 965 0 
-135.069 033 0 
-140.810 809 7 

-360 
-370 
-380 
-390 
-400 
-410 
-420 
-430 
-440 
-450 
-460 
-470 
-480 
-490 
-500 
-510 
-520 
-530 
-540 
-550 
-560 
-570 
-580 
-590 
-600 

-146.591 714 8 
-152.410 278 9 
-158.265 131 9 
-164.154 993 2 
-170.078 663 3 
-176.035 016 1 
-182.022 992 8 
-188.041 596 1 
-194.089 885 1 
-200,166 971 4 
-206.272 015 0 
-212.404 220 6 
-218,562 835 4 
-224,747 145 6 
-230,956 474 5 
-237,190 180 0 
-243.447 652 8 
-249,728 314 4 
-256.031 615 3 
-262.357 033 4 
-268.704 072 2 
-275.072 258 9 
-281.461 143 1 
-287,870 294 7 
-294,229 301 6 

t Of course, the WKB method cannot be used to give the normalisation constants for the lowest levels; rather 
an exact calculation would be needed. However, the exponential term is the same in any case. 
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